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Abstract
Recently discovered SARS-CoV-2 caused a pandemic that triggered researchers worldwide to focus their research on all 
aspects of this new peril to humanity. However, in the absence of specific therapeutic intervention, some preventive strategies 
and supportive treatment minimize the viral transmission as studied by some factors such as basic reproduction number, case 
fatality rate, and incubation period in the epidemiology of viral diseases. This review briefly discusses coronaviruses' life 
cycle of SARS-CoV-2 in a human host cell and preventive strategies at some selected source of infection. The antiviral activi-
ties of synthetic and natural polymers such as chitosan, hydrophobically modified chitosan, galactosylated chitosan, amine-
based dendrimers, cyclodextrin, carrageenans, polyethyleneimine, nanoparticles are highlighted in this article. Mechanism 
of virus inhibition, detection and diagnosis are also presented. It also suggests that polymeric materials and nanoparticles can 
be effective as potential inhibitors and immunization against coronaviruses which would further develop new technologies 
in the field of polymer and nanoscience.
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Abbreviations
ACE2  Angiotensin converting enzyme 2
Alpha-CoV  Alphacoronavirus
BCoV  Bovine coronavirus
Beta-CoV  Betacoronavirus
CD  Cyclodextrin
CFR  Case fatality rate
Ct  Cycle threshold
DA  Degrees of acetylation
Delta-CoV  Deltacoronavirus
DMVs  Double membrane vesicles
EDA  Ethylenediamine
EDC  Ethylene dichloride
E-protein  Envelope protein
ER  Endoplasmic reticulum
Gamma-CoV  Gammacoronavirus

GC  Galactosylated Chitosan
GTMAC  Glycidyl trimethylammonium chloride
HAE  Human airway epithelium
HCoV  Human coronaviruses
HE-Protein  Hemagglutinin-Esterase protein
HM-HTCC   N-dodecyl-N-(2-hydroxypropyl)-3-tri-

methylammonium chitosan chloride
HTCC   N-(2-hydroxypropyl)-3-trimethylammo-

nium chitosan chloride
IFITM3  Interferon-induced transmembrane pro-

tein 3
MA  Methyl acrylate
MERS-CoV  Middle East respiratory syndrome 

coronavirus
MHV  Murine coronavirus
M-Protein  Membrane protein
N  Nucleocapsid
NBS  Biosensor based on nanoparticles
NHS  Hydroxysuccinimide
Np  Nucleoprotein gene
N-Protein  Nucleocapsid protein
NPs  Polymeric nanoparticles
nsp  Non-structural proteins
ORFlab  Open reading frame 1ab
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PAMAM  Poly amidoaminedendrimer
pcMNPs  Poly (amino) carboxyl-coated magnetic 

nanoparticles
PCR  Polymerase chain reaction
PEI  Polyethyleneimine
PLGA  Poly (dl-lactide-co-glycolide)
R0  Reproduction number
R2  Correlation coefficient
RBD’s  Receptor binding domains
RdRp  RNA-dependent RNA polymeras
RTCs  Replication –transcription complexes
RT–LAMP  Reversetranscription loop-mediated 

isothermal amplification
RT-PCR  Reverse transcription polymerase chain 

reaction
SARS-CoV-2  Severe acute respiratory 

syndrome–coronavirus-2
S-Protein  Spike protein
TMPRSS2  Transmembrane protease, serine 2
TMPTESS11D  Airway trypsin protease
VLPs  Virus like particles
WHO  World Health Organization

Introduction

Following a series of human coronaviruses that have plagued 
the pages of human history [1], the newly discovered severe 
acute respiratory syndrome–coronavirus-2 (SARS-CoV-2) 
(Fig. 1) has emerged to become the highest risk to the 
global health care system, causing a worldwide outbreak 
of over hundred eighty million cases as of July 2, 2021. 
Coronaviruses resemble each other in their morphology and 
chemical structure; they are primarily zoonotic and found in 
avians and mammals. These viruses have been transmitted 
to the human system after being incubated through various 

animal’s hosts, causing severe acute illnesses and serious 
public health concerns across the globe.

Coronaviruses belong to the Coronaviridae family of 
the order nidovirales. The family Coronaviridae divided 
into two subfamilies named as Coronavirinae and Toroviri-
nae. Coronavirinae is further subdivided into four genera 
called Alphacoronavirus (Alpha-CoV), Betacoronavirus 
(Beta-CoV), Gammacoronavirus (Gamma-CoV), and Del-
tacoronavirus (Delta-CoV). In contrast, Torovirinae has 
been further divided into Bafinivirus and Torovirus based 
on phylogenic relationships (Fig.  2). Alpha-CoV com-
prises human coronaviruses (HCoV) such as HCoV-229E 
and HCoV-NL63, while Beta-CoV targets a wide range 
of mammalians, including mice and humans with HCoV-
HKU1, HCoV-OC43, SARS-CoV, Middle East respiratory 
syndrome coronavirus (MERS-CoV), murine coronavirus 
(MHV) and bovine coronavirus (BCoV). The Gamma-CoV 
and Delta-CoV infect mainly birds except for a beluga whale 
coronavirus that infects mammals. The Delta-CoV genus 
was discovered in 2012 and regrouped in different Corona-
virus (HKU11, HKU12, HKU13) belonging to mammals 
to birds. Presently, seven strains of known human corona-
viruses include 229E, NL63, OC43, HKU1, SARS-CoV, 
MERS-CoV, and SARS-CoV-2 [2]. The last three proved 
to be highly pathogenic that encountered wider host adapt-
ability and competence to cause severe diseases in humans, 
mice, chickens, cats, camels, dogs, pigs, civet cats, and bats 
(Fig. 3). An Alpha-CoV, HCoV-229E and then a Beta-CoV, 
HCoV-OC43 was discovered in 1966 and1967, respectively. 
After a large gap, two more Beta-CoV, SARS-CoV and 
MERS-CoV, were first found in Hong Kong, China, and Jed-
dah, Saudi Arabia, in the years 2003 and 2012, respectively. 

Fig. 1  Pictorial representation of SARS-CoV-2 with its five proteins, 
membrane protein (M-Protein), spike protein (S-Protein), hemagglu-
tinin-esterase protein (HE-Protein), nucleocapsid protein (N-Protein), 
small envelope protein (E-protein) and its genomic RNA Fig. 2  Classification of the nidovirales family
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At the end of 2019, SARS-CoV-2 identified in humans first 
time in Wuhan, China, in December 2019 and is the cause of 
Coronavirus disease -2019 (COVID-19) (Fig. 4).

The SARS-CoV recorded around 8000 infected cases 
with a mortality rate of 10% in 26 countries. In contrast, 
MERS-CoV recorded about 2500 infected cases in 27 coun-
tries, primarily in the Middle- East, with a higher mortality 
rate (about 35%) [3, 4]. The newly emerged SARS-CoV-2 
has recorded greater than one hundred eighty million cases 
with a 2.17% global average fatality rate in more than 200 
countries as of July 2, 2021 [5]. This novel human corona-
virus has significantly impacted the economy and the health 
care systems worldwide, causing radical changes in people's 
everyday habits and lifestyles across continents. Basic repro-
duction number  (R0), case fatality rate (CFR) and incubation 
period are the three most common factors extensively stud-
ied in the epidemiology of diseases. A comparison of these 
three factors for the nine most widespread epidemics of all 
time have been represented in Table 1 [6–32].

SARS-CoV-2 has a unique single strain of RNA virus 
that causes COVID-19 with respiratory and gastrointestinal 
illness in both humans and animals. It can be transmitted 
through respiratory droplets with direct/indirect contacts and 
characterized by distinct medical signs and symptoms. Few 
incidences of gastrointestinal symptoms such as diarrhoea 
up to 4% [33] and some early signs of loss of smell/taste 

were also reported [34]. Since there is no effective medica-
tion is available against the virus, supportive treatment with 
repurposed drugs and broad-spectrum antibiotics, antiviral 
nanoparticles provide relief to the patients in many coun-
tries and some preventive strategies to block the routes of 
transmission of this infectious disease (Fig. 5). The major 
attribution is the restriction in the movement of the people, 
disinfection of patient handling equipment, use of personal 
protective equipment, early diagnosis, avoiding close con-
tact with the diseased person, and mildly infected people 
were isolated in the residence or outpatient environment 
[35–39]. Washing hands, physical distancing, sanitization, 
and other practices must be followed as per the guidelines. 
The immune system, which can be enhanced by regular exer-
cise and a balanced diet, reduces the virus's effect [40].

Recently, few polymeric materials have demonstrated 
antiviral capabilities [41–47], which can prevent or inhibit 
the spread of a virus by (a) providing a semipermeable bar-
rier (e.g. a mask or face-shield), (b) interfering with binding 

Fig. 3  Animal origins, inter-
mediate host, and symptoms of 
MERS-CoV, SARS-CoV, SARS 
-CoV-2 human coronaviruses

Fig. 4  Timeline of coronavirues and their relative level of severity

Table 1  Basic reproduction number  (R0), case fatality rate (CFR) and 
incubation period in the epidemiology of selected diseases

Epidemic R0 number Incubation 
period (Days)

CFR (%) References

SARS 3.1–4.2 1–10 11 [6–8]
MERS 0.3–0.8 2–14 35 [9–11]
COVID-19 0.48–6.94 2–14 2.17 [12–17]
Ebola 1.5–1.9 2–21 83–90 [10–21]
Chicken pox 10–12 14–16 0.02 [22–24]
Smallpox 3.5–6 7–17 3 [25, 26]
Influenza 0.9–2.1 1–3 0.1 [27, 28]
Measles 12–18 10–12 1–3 [29, 30]
Mumps 10–12 16–18 1 [24, 31, 32]
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to the glycoprotein surface of host cells, (c) augmenting 
small molecular antiviral drug therapies, (d) enhancing the 
response of the immune system as a vaccine adjuvant, or (e) 
as a vehicle for other therapeutic molecules to improve the 
water solubility or stability of antiviral therapeutics.

The objective of this review is to highlight the epidemic 
caused by SARS-CoV-2 and the importance of natural, syn-
thetic or modified polymeric materials and nanoparticles 
that can be used to inhibit the virus entry into the cellular 
receptors due to its promising antiviral activities. Therefore, 
these materials may be utilized as an inhibitor for the deadly 
spreading of SARS-CoV-2. In addition, the mechanism of 
viruses in the human body (Fig. 6) and the mechanism of 
virus inhibition reported by different researchers are sum-
marized in this review with a short perspective of the poly-
meric approach toward the treatment of this new type of 
coronavirus.

Polymeric Materials

The investigation with polymeric materials and nanoparti-
cles  (NPS) as an antiviral agent has been successfully car-
ried out for many years, producing unique classes of mate-
rials that hold promise for conquering these hurdles. It can 
directly inhibit viral replication and infection, usually by 

binding to the virus and preventing it from invading a host 
cell. Both natural and synthetic polymers show the ability to 
be used for antiviral treatment. The natural polymers include 
cyclodextrin, chitosan, carrageenans, whilst the synthetic 
polymers are polyethyleneimine (PEI), poly (dl-lactide-co-
glycolide) (PLGA), dendrimers and metal and metal oxide 
NPs, namely silver, copper, titanium, zinc and gold, have 
been introduced as effective antiviral agents.

Chitosan

Chitosan is a natural linear polysaccharide composed of ran-
domly distributed β-(1 → 4)-linked D-glucosamine (deacety-
lated unit) and N-acetyl-D-glucosamine (acetylated unit). It 
gained interest not only for its natural abundance but also for 
its unique antiviral, antibacterial, anti-inflammatory activi-
ties, biocompatibility, biodegradability, non-toxicity, and 
extreme moldable properties [48–53]. Thus, it has broad 
prospects in biomedical science and potential applications 
in gene therapy, material science, biotechnology, food indus-
try, cosmetics, environmental protection, agriculture, and 
even wastewater treatment [54]. Chitosan is a deacetylated 
derivative of chitin (Fig. 7), a naturally occurring polymer 
in shrimp, squid, and crab shells [55, 56]. Some of the 
acetamide (-NHCOCH3) functional groups of chitin are 
transformed into primary amine (-NH2) functional groups 

Fig. 5  Preventive strategies 
against SARS-CoV-2 at some of 
the selected sources of infection
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through an incomplete deacetylation process. Because of 
this, the glucose portion of chitosan contains a randomly 
distributed acetylated (-NHCOCH3) and deacetylated -NH2 
groups along the chain. The ratio of 2-acetamido-2-deoxy-
D-glucopyranose to 2-amino-2-deoxy-D-glucopyranose 
structural units is known as the extent of acylation has a 
notable effect on chitin solubility and solution properties. 
Various chitosan with different degrees of acetylation (DA) 
have been synthesized and reported [57].

The presence of amine groups in the structures gives 
room for modification reactions. Thus, following the 
successful deacetylation of chitin to produce chitosan, 
biomedical researchers [58–62] made modifications to 
the chemical structures of chitosan to produce cationic 
chitosan derivatives, such as N-(2-hydroxypropyl)-
3-trimethylammonium chitosan chloride (HTCC)and 

N-dodecyl-N-(2-hydroxypropyl)-3-trimethylammonium 
chitosan chloride (HM-HTCC). HTCC is formed by the 
reaction of chitosan with glycidyl trimethylammonium 
chloride, while the HTCC forms the HM-HTCC with 
N-dodecyl aldehyde. Figure 8 shows the structural dif-
ference between the HTCC and HM-HTCC. Due to the 
random distribution of acetamide and amine groups in 
the chitosan chain, -R can be either -H or -COCH3. Simi-
larly, in HM-HTCC polymer, -R may be -H or -COCH3 
or -C12H25.

Galactosylated Chitosan (GC) hydrophilicity is higher 
than chitosan when the degree of galactosed chitosan 
decreased, which indicates that it could be used as a novel 
promising scaffold for hepatocyte and transplantation. GC is 
positively charged spherical shape particles having an aver-
age diameter of 1.05 nm and standard zeta potential + 15 mV. 

Fig. 6  The life cycle of SARS-
CoV-2 in human host cell
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Due to their novel properties, GC particles can act as passive 
and active drug targets to the liver [63].

Cyclodextrin

Cyclodextrins (CDs) are non-toxic oligosaccharides with 
cyclic α-D-glucopyranose units of (α-1, 4)-linkage, hydro-
phobic interior and hydrophilic exterior. Studies with CD 
and its derivatives show its ability to form complexes with 
various drugs in the last two decades. It can further enhance 
the solubility of water-insoluble drugs during formulations 
by the inclusion complexation technique. The advantages of 
the complexed drugs with CDs are their abundance, higher 
stability, masking of bad test or odor, less volatile nature, 
minimized side effects, and improved drug release system 
[64].

Carrageenans

Carrageenans (CGNs) are a family of natural high molecular 
weight and linear sulfated polysaccharides that are mainly 
extracted from marine seaweeds. These natural polymers are 
ionic in nature as they contain about 15–40% ester sulfate 

content. They are further classified into three groups based 
on their degree of sulfation (sulfate content), namely kappa 
(κ), iota (ι) and lambda (λ) carrageenans, containing one, 
two, and three negatively-charged sulfate ester groups per 
disaccharide repeating unit, respectively (Fig. 9). Thus, the 
main differences that influence the properties of κ-CGN, 
ι-CGN, and λ-CGN are the number of the ester sulfate 
groups and their relative positions on the repeating galactose 
units. CGNs polymers of different molecular weights have 
been used widely to facilitate drug formulation or sustained 
drug release [65–70].

Polyethylenimine

Polyethylenimine (PEI) is one of the important and promi-
nent organic polyamine polymers, also the best example of 
widely studied polycationic polymers. It can form nano-
sized particles by constructing a linkage with the sugar-
phosphate backbone of nucleic acids [71]. They are water-
soluble, branched synthetic polymer with flexible length and 
frequently used in vitro and in vivo as a non-viral vector for 
DNA/RNA transfection and gene silencing. However, their 
toxicity depends on the molecular weight, and increased 

(a) HTCC (b) HM-HTCC
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R = H or COCH3 or C12H25
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Fig. 9  Chemical structure of the 
repeating disaccharide units in 
κ-CGN, ι-CGN, and λ-CGN
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branching and higher charge density restrict its usage in 
human gene therapy [72]. Hence several methods such as 
covalent binding of polyethylene glycol or several moieties 
with PEI were used to increase its stability and reduce tox-
icity [73]. Modifications of PEI using a coating of serum 
albumin [74], dextran [75], acylation [76] led to enhance the 
biocompatibility and gene transfer efficiency.

Poly (lactic‑co‑glycolic acid)

Poly(lactic-co-glycolide) (PLGA) is a well-established 
biodegradable polymer used in medical devices and drug 
delivery applications. They are less toxic compared to cati-
onic polymers. By varying the quantity of D, L lactide and 
glycolide, different forms of PLGA can be obtained [77].

Dendrimers

Dendrimers are highly branched three-dimensional macro-
molecules with nano-size dimensions and distinctive prop-
erties due to their spherical shape and internal empty core 
space. The empty internal cavity can encase other molecules 
into its macromolecular cavity and act as coating and prevent 
those molecules from further oxidation and clustering. These 
unique properties of dendrimers made them useful as diag-
nostic agents, antibacterial, antitumor, and biomedical appli-
cations [78, 79]. Dendrimers have a definite branched struc-
ture with the presence of different compositions and groups 
included a large surface area in its moiety made a unique 
spherical shape. These groups can be considered the active 
functional sites that provide a template for drug immobili-
zation and grafting. The center core of the dendrimer con-
sists of an atom or multifunctional molecule, and branching 
units form a covalent bond with the central core and terminal 
functional groups on the external surface. Dendrimers are 
monodispersing macromolecular units with specific sizes 
and molecular mass. Due to their reproducible shape and 
size, they have well-controlled rheological properties. The 
terminal groups of dendrimers can be controlled to have dis-
tinct properties like hydrophilicity or lipophilicity, solubility, 
miscibility, and acidity. One of the most important features 
of dendrimers is the ability to encapsulate small size materi-
als such as drugs, metals, and imaging moieties that can fit 
within their cavities and interact through charge interactions, 
hydrogen bonding, and lipophilicity. The encapsulation of 
drugs in dendrimers can increase drug stability, reduce pos-
sible drug toxicity, and expedite the drug's targeted and con-
trolled release. Dendrimers are a low-cost base compared to 
proteins with higher biocompatibility and provide an accu-
rately controlled large macromolecular surface [80]. The 
dendrimers can encapsulate other biologically active com-
pounds and conjugate molecules, and act as a coating [81]. 
For each generation of a dendrimer, the number of surface 

groups rises exponentially while the diameter increases lin-
early. In addition, the introduction of varied chemical groups 
such as basic, acidic, hydrophobic, hydrogen-bonding capa-
bility, and charges, allows modification and controlling of 
the chemical properties and architecture of core, branches, 
and surface groups of dendrimers [82]. These variation of 
the properties, composition and architecture of dendrimers 
are the key physicochemical properties that improve theirs 
in vitro [83] and in vivo [84] behaviours.

G4 -PAMAM (poly amidoamine)dendrimer amine-ter-
minated PAMAM dendrimer used as a coating for the nano 
Ni material-Ni(NO3)2⋅6H2O, which can exhibit good anti-
microbial activity against various bacteria [78]. The nano 
Ni material usually undergoes rapid oxidation and aggregate 
during ambient conditions. Dendrimer can encapsulate Ni 
NPs and act as a coating to prevent them from further oxi-
dation and aggregation. The chemical reaction exhibited by 
this dendrimer encapsulated Ni nanoparticles prevent bac-
terial growth by disrupting the cell wall when it was tested 
against E coli bacteria [85].

Polymeric Nanoparticles (NPs)

NPs based polymers are widely used in medicine as gene 
carriers. They are colloidal solids with a particle size of 
10–100 nm. Due to their very small size, they can do cap-
illary intrusion and absorption by cells, which results in 
higher concentrations at the target site [86]. Their unique 
properties such as lower particle size [87], higher surface 
area to volume ratios [88], tunable surface charge [89], 
biomimetic properties [90, 91], and the possibility of drug 
encapsulation [92] help them to be used as a weapon against 
virus treatment. However, their antiviral properties have 
been investigated and used for development or improve-
ment purposes only for some viruses like influenza, HIV, and 
rabies [93, 94]. The metal and metal oxide-based nanoparti-
cles can work as attachment blocking, reproduction inhibi-
tory action, and viral wall and membrane deformation [95].

Mechanism of Inhibition of Viruses

SARS-CoV-2 has caused a worldwide health crisis due to its 
high infection rate. Several preventive strategies have been 
adopted to combat this lethal infection include facemask 
use, vaccine development, repurposed antiviral drugs, and 
macromolecular neutralizing antibodies [96, 97]. Polymeric 
materials have been designed as antiviral inhibitors and drug 
delivery carriers for effective virus inhibition and antivi-
ral drug delivery carriers. It includes natural and synthetic 
polymeric materials, polymer-based prodrugs, nanoparti-
cles, which show the potential and significantly improve 
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the efficacy of antiviral therapeutic strategies (Table 2 [58, 
98–105] and Table 3) [106–131].

Chitosan

Generally, antiviral polymeric drugs have been developed 
mainly based on the inhibition of the virus's interactions 
with the host cell. Polymers used their high molecular 
weight and multivalent binding capability to exert their 
antiviral activity through steric shielding of the viral sur-
face or competitive inhibition of the interactions [132]. The 
blocking of host cell receptor from viral docking and entry 
can be achieved either via polymer binding to the host cell 
or the virus, both of which leads to a reduction in viral entry 
(Fig. 10). HTCC polymers with different degrees of substitu-
tion have been reported to have an antiviral activity used to 
treat infections caused by coronaviruses by inhibiting viral 
replication. Milewska and his co-workers used functional 
assays, molecular methods, flow cytometry, and confocal 
microscopy to study the mechanism of HTCC antiviral 
activity against human coronaviruses [58, 133, 134]. Even 
though the HTCC polymers do not hamper virus binding to 
heparan sulfate proteoglycans (HSPs), the polymers interact 
with the corona viral spike protein and block virus interac-
tion with cellular receptors ACE2 proteins. Recently, the 
antiviral activity against the pathogenic SARS-COV-2 and 
MERS-COV using permissive cell lines and human airway 
epithelium model for in-vitro and ex-vivo, respectively 
[135]. The result revealed that HTCC efficiently blocked 
replication of both SARS-COV-2 and MERS-COV. Thus, 
HTCC polymers with different degrees of substitution are 
considered potent inhibitors and promising drug candidates 
for the highly pathogenic SARS-COV-2. HTCC with varying 
degrees of substitution has a different inhibitory effect on 
coronaviruses. Though the degree of substitution in HTCC 
polymers is usually varied between 57 to 77%, different 
HTCC polymers have different inhibitory of coronaviruses. 
Table 4 summarizes the HTCC polymers that have the most 
significant inhibitory effect on different coronaviruses [58, 
133–135].

Cyclodextrin

The cavity in the CDs allows the encapsulation of hydropho-
bic groups forming inclusion complexes without modifying 
the guest's structure and chemical properties [136]. Alterna-
tive interaction mechanisms such as forming non-inclusion 
complexes or the solubilization through aggregates can 
also be present in CD solutions. Sun et al. [137] discussed 
the mechanism and production of CD-soluble angiotensin-
converting enzyme 2 (CD-sACE2) inclusion compounds 
treatment of SARS-CoV-2 infections by blocking S pro-
teins. sACE2, the extracellular region of ACE2, retains the 

enzyme activity of ACE2 and can bind to the S-protein of 
SARS-CoV, inhibiting SARS-CoV infected cells. Since the 
infection mechanism of SARS-CoV and SARS-CoV-2 is 
the same, sACE2 could also inhibit the infection of SARS-
CoV-2. The formation of a complex of CD and sACE2 could 
effectively improve the water solubility of sACE2, so it 
meets the requirements for drug atomization inhalation. The 
inclusion conjugates release sACE2 after entering the body 
via atomization or other drug delivery. The released sACE2 
would combine with SARS-CoV-2 S-proteins to block the 
virus's ability to infect and destroy human cells.

Carrageenans

Carrageenans exhibit antiviral activity against African swine 
fever virus, rhinovirus, influenza A virus enterovirus, human 
herpes, and dengue virus [65–70, 138]. Very recently, Yejin 
and his co-workers [102] investigated the efficacy of the 
sulfated polysaccharide CGN against SARS-CoV-2 spike 
antibody, and the immunofluorescence microscopy result 
revealed that λ-CGNs effectively inhibit the SARS-CoV-2 
viral infection without the viability of the cell. Moakes and 
his coworkers [139] recently reported the nasal formulations 
actively target the removal of SARS-CoV-2. In addition, the 
spray system, which is a composite mixture containing both 
gellan and λ-CGNs, has been reported to demonstrate highly 
potent capacities against SARS-CoV-2 infection in Vero 
cells, resulting in complete inhibition of the virus. While 
the gellan systems exhibited limited ability to suppress the 
SARS-CoV-2 virus, the λ-CGN showed complete inhibition 
of the SARS-CoV-2 infection over 48 h. However, the highly 
potent antiviral composite system provided an enhanced 
mechanical response towards spraying and antiviral activ-
ity, a synergistic behaviour from both gellan and λ-CGN. 
Thus, the spray’s ability to completely inhibit viral infection 
is attributed to the active polysaccharide λ-CGN component 
of the spray formulation. The mechanism for the inhibition 
of the SARS-CoV-2 virus from attacking the host cell recep-
tors is assumed to be either through the creation of a steric 
barrier across the host cell or around the virus interface, as 
illustrated in Fig. 11.

Polyethylenimine

The polycationic polymer such as N, N-dodecyl methyl-
polyethyleneimine (PEI), can act as a good antiviral agent 
towards hydrophobic glycoprotein SARS-CoV-2 as reported 
in the case of the influenza virus, which was protected from 
the outside by a lipid membrane. Different solid surfaces 
such as glass, polypropylene, and polyethylene modified 
with hydrophobic polycationic polymers produce strong 
surface-protein interaction caused the viral protein loss 
destroying the virus [140]. However, it has been reported 
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that modified surfaces of polypropylene and polytetrafluor-
oethylene with hybrid self-assembled monolayers (SAMs) 
have enhanced binding with spike proteins, eventually dis-
integrate the coronaviruses [141].

Poly (lactic‑co‑glycolic acid)/Poly 
(lactic‑co‑glycolide) (PLGA) and PLGA NPs

PLGA is a well-established, less toxic biodegradable syn-
thetic copolymer used in FDA-approved pharmaceutical 
products and medical devices. NPs developed by polymeric 
materials such as PLGA, PLA, poly(ethylene glycol)-poly(e-
caprolactone) (PEG-PCL), and PLA-PEG have been used 
as nanocarriers drug delivery systems for the antiviral 
disease treatment [142]. PLGA NPs have been shown pre-
clinical efficacy in antigen vaccines technology like HBs 
Ag, Malaria antigens, Bacillus anthracis spores to generate 
extended cellular and humoral immune response as suitable 
candidates for encapsulating the antigens within the nano-
carrier to provide extended and controlled biological release 
[143].

Dendrimer

Polymeric materials comprising dendrimers such as poly-
amidoamine (PAMAM), PAMAM (EDA), and polyly-
sine dendrimers have been reported to have a significant 
antiviral effect against enveloped viruses, including the 
human immunodeficiency virus [144]. Anionic dendrimers 
including hydroxyl, carboxyl, and succinic-acid terminated 
PAMAM and cationic dendrimers containing primary amine 
end groups exhibit significant antiviral activity with MERS-
CoV [145]. Nontoxic nanogel based polyglycerol sulfate 
dendrimer showed extensive antiviral activities by inhibiting 
viruses from binding to the cellular surfaces. Heparan sulfate 
also acts as a co-receptor for SARS-CoV-2 mediating entry 
to host cells. Therefore, nanogel based dendrimers could 
be a potential component in COVID-19 therapy [146, 147].

Polymeric Nanoparticles

Metal-based NPs have a higher surface area, enhancing the 
exclusive physicochemical properties that allow them to 
intermingle with viruses and other micro-organisms. The 
function of metal-based nanoparticles antivirals includes 
three interacting stages, (a) linking and connecting with the 
virus to inhibit the virus attachment penetration into the cell; 
(b) generating highly active oxygen, other ions and radi-
cals that adhere to the wall (spikes or membrane) and able 
to destroy the structure and its function of viral proteins 
and nucleic acids; (c) simulating the nucleus to enhance the 
immune response of the host cell, and preventing the virus’s 
budding and spreading.Ta
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Table 3  Polymeric nanoparticle-based approach for viral inhibition and diagnosis

Nanoparticles Mechanism of Antiviral Action Purpose Reference

AgNPs Inhibit the virus binding with the cells in 
the initial stage of virus life cycles

Inactivate replication and minimize viru-
cidal activity

[106]

Restrict structural change due to viral inva-
sion in the entry cell

Stop replication and act as an antiviral 
agent

[107]

It blocked to form  CD4+ T cells through 
CD4 binding with present gp120 on the 
surface envelope glycoprotein

Replication of virus entry into the target 
cell

[108]

Control viral culture Prevents non–envelope viruses entry [109]
Produce electrospun coating to stop inter-

action with the viral surface
Reduce virus reproduction during entry 

into the cell
[110]

Ricinus Communis AgNPs Viral fusion between envelope protein and 
host cell

Anti-enterovirus agent [111]

Fungi-AgNPs Minimize virus infection and stop interac-
tion of the virus with the host cell

Antimicrobial agent [112]

Cinnamon-AgNPs Inhibit virus propagation and blocked 
hemagglutinin function

Restrict virus penetration inside the cell [113]

Coffee and green tea-AgNPs Destroy the viral genome organism 
morphology and restrict hemagglutinin 
function

Viral replication and functioning as a 
viricidal agent

[114]

AgNps immobilized onto textile fabrics Stop virus surface passivation Act as a virucidal agent [115]
TiO2 ~ DNA nanocomposites Produce nucleic acid precipitation Inhibit virus reproduction in cell culture [116]
TiO2 NPs Affect and control transport into the sub-

surface of virus
Inactivate the virus entry [117]

Silica-NPs Enable to detect antigen and enhance 
blood safety by minimizing antibody

Infection detection and adopted to obtain 
detection range antigen of viruses

[118]

β-cyclodextrin-graphene oxidecomposite Initially stop the function of virus and 
blocked its attachment with the host cell

Protect and enhanced healing ability 
against the virus

[119]

Carbon dots It prevents to make any linkage between 
virus and histo-blood group antigen, 
mostly with saliva secretor of the host 
cell

Control the degradation of capsid proteins 
of the virus and slightly blocked to bind 
with the antibody

[120]

Protein NPs Maintained hemagglutinin function It leads to activate an enhanced immune 
response against the virus

[121]

Polypeptide NPs Reduction of cell protected by  CD4+ T 
cells and transfusion provide immune 
serum

Lifetime immune response [122]

Polystyrene NPs Mannose-specific lectin Mucosal vaccine [123]
PVP-stearic acid-polyethylene glycol -NPs Enhanced endocytosis pathways Anti-viral agents [124]
Magnetic NPs Virus detected through different quantifi-

cation methods
Treatments and diagnosis of the infected 

cells
[125]

POD-NLCs Controlled cell proliferation Anti-viral agents [126]
Dendrimer-RNA NPs Enhanced  CD4+ T cells on the surface of 

envelope glycoprotein to work against 
IgG responses

Detection of antigen and vaccine prepara-
tion

[127]

G2-dendrimer-citric acid-polyethylene 
glycol

Antibody neutralization and boost immune 
response

Vaccine technology [128]

AuNPs Inhibit hemagglutinin function and pro-
duce antibody-protein antigens

Enhanced immunity response and cell 
protection against virus

[129]

Useful to generate an antibody that can be 
bind with the membrane matrix protein 
of the infected cells

Preparation of vaccine and as viricidal 
agents

[130]

Detection of virus pathogen by incorporat-
ing a specific antibody

Applied as an immunosensor [131]
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Silver–Based Antiviral Nanoparticles

Silver and its derivatives are classic antimicrobial com-
pounds and in high demand for their impressive anti-patho-
gen performance. Silver nanoparticles (AgNPs) can interact 
with the outer layers of the virus and prevent their attach-
ment on and penetration into the host cells. The average 
particle size of AgNPs is a crucial factor that affects their 
antiviral ability. Silver-based nanoparticles are classic anti-
microbial compounds since they can work against pathogens 
efficiently. The average particle size of nanoparticles can 
affect their antiviral ability. They interact with the outer lay-
ers of the virus and prevent their attachment on and penetra-
tion into the host cells. Krzyzowska et al. [148] reported that 
Ag NPs could effectively control the herpes simplex virus 
type 2 (HSV-2) infection in mice by inhibiting the adhe-
sion of the virus to host cells. Here, the silver nanoparti-
cles quickly contact polioviruses (25–30 nm), destroy their 

Fig.10  Mechanism of blocking 
of host cell receptor from viral 
docking and entry by antiviral 
polymeric drugs

Table 4  Coronaviruses that are significantly inhibited by HTCC poly-
mers

*The fraction of amine group  (NH2) substituted within the chitosan 
chain

Polymer Degree of substitution* (%) Coronavirus

HTCC-63 63 HCoV-NL63,
HCoV-OC43
HCoV-HKU1
MERS-CoV

HTCC-62 63 HCoV-229E
HCoV-HKU1

HTCC-65 65 HCoV-NL63
HCoV-OC43

HTCC-77 77 HCoV-229E
SARS-CoV-2

Fig. 11  Mechanism for the inhi-
bition of SARS-CoV-2 through 
blockage of virus entry into 
the host cells as the polymer 
creates a steric barrier across 
the cell interface (a) and around 
the virus interface (b). Adapted 
from reference [134]
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proteins molecules, and prevent them from binding with the 
host cells. Han et al. [149] reported that for other silver nan-
oparticles  (Ag2S), the antiviral activity is mainly ruled out 
by inhibiting RNA synthesis and viral budding. It was also 
argued that activating ISG proteins and pro-inflammatory 
cytokines might be an essential factor in this case.

Copper‑Based Nanoparticles

Copper oxide nanoparticles are widely used to prepare anti-
bacterial materials due to their low cost, higher stability, 
and wide range of antibacterial properties. The proposed 
mechanism by Tavakoli et al. [150] is as follows: the  Cu2+ 
ions released from the nanoparticles enhances the formation 
of reactive oxygen species, which helps to collapse the HSV 
capsid integrity and degrade the whole genome. Also, nano-
particles of  Cu2O having size (~ 50 nm) inhibits the HCV 
viruses to be attached to the cells through the multivalent 
binding of virions, thereby blocking the entry of the virus 
into the cell [151].

Gold‑Based Nanoparticles

Gold nanoparticles (Au NPs) are biocompatible and pos-
sessing the ability to bind with biological ligands [152]. 
Generally, the mechanism of viral inhibition by Au NPs are 
based on blocking the viral particles to be bound to the cell, 
thereby inhibiting virus attachment/entry and controlling the 
cell to- cell spread of the virus. Studies show that morpholo-
gies of Au NPs have eater influence on antiviral properties 
and mechanisms [153–155].

Nanoparticles Applied to Viral RNA Extraction

Generally, extraction based on the column is not easy in 
automation. The advantage of this method is that the cen-
trifugation is not included; therefore, it allows complete 
automated purification of nucleic acid, which was one of the 
parameters for SARS-CoV-2 diagnosis. Hence an automated 
extraction procedure was developed based on pcMNPs for 
viral RNA. A system consisting of magnetic rods was intro-
duced for the purification of nucleic acid. An automated 
instrumental program was fixed as per the usual protocol. 
No further dissociation or removal of pcMNPs takes place 
in the extraction process even though the shaking speed of 
magnetic rods were at its maximum. The solution obtained 
was transparent and colorless. The method based on pcM-
NPs was highly advantageous and suitable, as discussed 
earlier in viral RNA extraction. The amplification curve 
of manually performed samples with direct RT-PCR was 
similar to positive control. The efficiency and working suit-
ability of the pcMNPs-based method to identify and separate 
the nucleocapsid (N) gene originated. The outcomes proved 

again higher extraction efficiency of the automation method 
based on pcMNPs for manual and direct RT-PCR protocol 
with the help of ORFlab region and N gene assays.

The direct and straightforward RT-PCR protocols and N 
gene pseudovirus were compared with the modern and latest 
pcMNPs-based viral RNA process, which was more accurate 
and dynamic in the detection process. Standard fresh sam-
ples were prepared by 10-fold serial dilution to obtain copies 
of pseudovirus105–10in serum along with reference samples 
without pseudovirus, which can be used as a negative control 
to detect false-positive signals. The correlation coefficient 
 (R2) was higher, about 0.999, between pseudovirus particle 
numbers (in logarithm) and cycle threshold (Ct) in the range 
of 10 to  105 copies. Similar results were also observed with 
experiments conducted by the direct RT-PCR method based 
on pcMNPs. The RT-PCR amplification is much more accu-
rate for both with or without pcMNPs as per the resultant 
data. The amplification signals from negative control were 
less respectful to Ct but considered as valid positive results. 
Due to this drawback, it was mandatory to verify and opti-
mize the primer pairs and probe. The PCR amplification 
and extraction efficiency were found better with the latest 
developed MB-based method. It concluded that RT-PCR 
assay even works more accurately with 10 copies of SARS-
CoV-2 [156].

The biosensor based on nanoparticles (NBS) was com-
bined with reverse transcription loop-mediated isothermal 
amplification (RT-LAMP), developed one step, and one tube 
RT-LAMP-NBS assay product for diagnosis COVID-19. 
The target sequences, F1ab and nucleoprotein gene (np), 
were amplified and identified in the test simultaneously with 
a constant temperature. It was necessary to optimize all the 
required parameters and their suitability to discuss the prin-
ciple of RT-LAMP for COVID-19. The RT-LAMP-NBS 
assay was an almost equipment-free station, strengthening 
the laboratory system resources and reporting the results 
after diagnosis. RT-LAMP-NBS assay was low cost, feasi-
ble and sensitive for detection of SARS-CoV-2 [157]. So, 
it became a valuable diagnostic tool used in the field and 
a primary health care hospital. The design of COVID-19 
diagnostics was the flexible modification of the existing 
diagnostic technologies.

The previous experience of the 2002 SARS outbreak 
made the researcher more cautious in taking the right deci-
sion, which enabled the diagnostics of this virus earlier. 
Its optimization process was quicker, which lead to a con-
trolled spread of it. Furthermore, with the help of electron 
microscopy, the study of the virus became clearer. To design 
PCR primers and probes, the sequencing of the genome and 
the morphology of the virus were the required parameters. 
This technology was used to identify SARS-CoV-2 for less 
than one month, whereas the same detection took almost 
5 months for SARS-CoV. Due to this technology, nucleic 



 Journal of Polymers and the Environment

1 3

acid tests lead to the detection and sequencing of SARS-
CoV-2. This type of action leads to control of the outbreak. 
Serological tests are the secondhand approach for testing this 
infection, which was more easily monitored than the nucleic 
acid test. Amplification at a constant temperature, barcoding, 
microfluidic technologies should be updated to be applied 
quickly for this situation. The latest technology of smart-
phones and diagnostics provides the highest surveillance and 
smooth communication of the latest updates. It was now 
clear that diagnostics were essential for reducing the mortal-
ity and further spread of pathogens [157]. The health worker 
dealt with diagnostic patients in different modes compared 
to others (Fig. 12).

Carbon‑Based Antiviral Materials

Carbon atoms can link to each other and form allotropes 
such as carbon dots, carbon nanotubes and graphene oxide. 

Here also the geometry of the carbon materials determines 
their anti-infection performance. Using carbon dots, Han 
et al. [158] demonstrated that the cells treated with CDs 
could stop the multiplication of pseudorabies virus (PRV) 
and respiratory syndrome virus (PRRSV) by the produc-
tion of interferon-a (IFN-a) and IFN-stimulating genes 
(ISGs). Similarly, the GO and rGO [159] exhibited fasci-
nating antiviral behaviours from their unique single-layer 
structure and surfaced negative charges. The negatively 
charged GO showed a higher potential to electrostatically 
interact with the viruses before entering the cell, ending 
in the destruction of its single-layer structure and sharp 
edges. However, the mechanism of antiviral activity in GO 
remains controversial.

Fig. 12  Example of the patient 
and sample workflow when a 
symptomatic patient presents 
himself at the hospital for tri-
age, patients are managed based 
on the severity of symptoms, 
the collected samples are tested 
onsite if possible or transported 
for research at designated labo-
ratories, the RNA is extracted 
by nucleic acid extraction and 
are amplified for detection by 
PCR (polymerase chain reac-
tion), and graphs are analyzed 
to segregate positive and nega-
tive cases
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Conclusion and Future Recommendations

Chitosan-based polymers and other polymeric materials 
such as CD, PEI, PLGA and PAMAM dendrimer have 
been used to treat and prevent infections caused by coro-
naviruses through inhibition of their replication. Follow-
ing the recent outbreak of novel coronavirus (COVID-19), 
these polymers could be investigated as potential antiviral 
agents to treat this deadly virus as few have shown inhibi-
tory effects. The natural and synthetic polymeric materials 
covered in this review are biocompatible, cost-effective, 
environmentally friendly, and much safer for antiviral 
applications, detection, and inhibition. On the other hand, 
nanoparticles mentioned in this review are used to detect 
and inhibit virus entry inside the host cell. This inhibition 
and detection properties of nanoparticles can be of interest 
for developing vaccines and treatments of COVID-19. It 
was observed that basic reproduction number, case fatality 
rate and incubation period are the most common factors 
in the epidemiology of several viral diseases that can be 
prevented by taking supportive treatment and preventive 
strategies without specific therapeutic intervention. How-
ever, it is now obvious that early detection is one of the 
best ways to break the spread of the virus until an effective 
and safe vaccine/medication or therapy is developed.

Currently, novel technologies and improvements in 
nanoscience can be used to detect and treat respiratory 
diseases caused by viruses. This review can be helpful and 
give insight into the upcoming studies for the development 
of nanomedicine against SARS-CoV-2 [160]. Moreover, 
the limitations caused by conventional and subunit vac-
cines can be solved by applying nanoparticles therapeutic 
approaches due to their unique nature, such as size, shape, 
surface area, and ability to functionalize, which causes 
strong immunogenicity and enhanced antigen presenta-
tion. The polymeric nanoparticle of Poly (lactic-co-gly-
colic acid) can be used in the human body without any 
side effect approved by the Food and Drug Administra-
tion [161]. As per the antibacterial and antifungal stud-
ies, inorganic nanoparticles based mainly on gold, silver, 
and zinc are among the best candidates for biomedical 
applications [106–110, 129–131, 162]. As per the data, 
the required conformational specific antibodies which 
are active to nullify the SARS-CoV infections via NPs-
based systems were synthesized by the researchers [163]. 
Nowadays the researchers are actively monitoring peptide-
based nanoparticles. The peptide inhibitor extracted from 
the protein ACE2 gives an extra edge for blocking SARS-
CoV-2, whose binding efficiency can be increased with 
multiple binding of nanocarrier linked peptides [164]. But 
the toxicity of NPs should be carefully taken care of while 
designing the theragnostic NPs for respiratory diseases. 

Novel NPs reported reference to exhibit the following 
properties: easy penetration through the mucus membrane 
without sticking, biodegradable and less toxic, causing no 
lesions during treatment, easily modifiable chemical struc-
ture while adding surface capping agents.

From the previous studies for other types of viruses, 
nano-based vaccines have proven as a compelling candi-
date. Therefore, one of the future studies should be on the 
practical usage of polymeric nanoparticles as a drug/vaccine 
to develop long term immunization against coronaviruses. 
These nanomaterials may help in improving the sensitivity, 
detection limit, and analysis time of coronaviruses. Also, the 
potentiality of the electrochemical devices and techniques 
such as colorimetric sensing, electrochemiluminescence, 
immunosensing, electrochemical sensor, photoluminescence 
and chiroimmunosensing to find out the coronaviruses must 
be studied thoroughly.
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